Nutrición: Energía y digestión


Autor: A. Hernández

1. La producción de la energía:

Todas las sustancias nutritivas que se absorben desde el aparato digestivo hacia la sangre tiene como cometido fundamental el de proporcionar al organismo la energía suficiente para que pueda realizar, de la forma más eficaz y con el menor coste posible, todas sus funciones y, además, para proporcionarle el material constitutivo que necesita para ir reponiendo las propias pérdidas que se producen durante el desarrollo de estas funciones.

El hombre y los animales superiores (organismos heterótrofos) consiguen esta energía a través de un proceso de oxidación de los nutrientes que se ingieren a través de la alimentación. Sin embargo, las células, para obtener energía, no pueden utilizar esas sustancias directamente, puesto que la producción energética celular se sustenta, casi por completo, en una molécula denominada adenosintrifosfato o ATP, el cual se sintetiza a partir de las sustancias nutritivas anteriormente citadas. El ATP tiene tres moléculas de ácido fosfórico las cuales están enlazadas entre sí; estos enlaces son fáciles de romper y además liberan gran cantidad de energía que será la utilizada por todas las células del organismo. Cuando una célula necesita energía para cualquier función, mediante un proceso de hidrólisis se separa de la extremidad de la molécula del ATP una de las uniones de fostato, lo que produce una gran liberación de energía (aproximadamente 7.300 calorías). Como resultado de esta reacción aparece un nuevo compuesto con dos moléculas de ácido fosfórico: el adenosindifosfato o ADP, la cual, mediante una reacción reversible, se unirá posteriormente a una nueva molécula de ácido fosfórico, con lo que se obtendrá, de nuevo, otra molécula de ATP. (Ver sistemas energéticos)

Como se ve, las células, a través de procesos bioquímicos complejos, son capaces de transformar la energía potencial presente en los alimentos de la dieta en otros tipos de energía necesaria para poder llevar a cabo todas sus funciones, como por ejemplo la energía cinética, para el desarrollo de las actividades motrices; la energía térmica, con la que trata de regular su temperatura; o la energía eléctrica, que va a emplear en la conducción de impulsos nerviosos.

2. Valor energético de los alimentos:

El valor energético o valor calórico de un alimento es proporcional a la cantidad de energía que puede proporcionar al quemarse en presencia de oxígeno. Se mide en calorías, que es la cantidad de calor necesario para aumentar en un grado la temperatura de un gramo de agua. Como su valor resulta muy pequeño, en dietética se toma como medida la kilocaloría (1Kcal = 1000 calorías). A veces, y erróneamente, por cierto, a las kilocalorías también se las llama Calorías (con mayúscula). Cuando oigamos decir que un alimento tiene 100 Calorías, en realidad debemos interpretar que dicho alimento tiene 100 kilocalorías por cada 100 gr. de peso. Las dietas de los humanos adultos contienen entre 1000 y 5000 kilocalorías por día.

Cada grupo de nutrientes energéticos (glúcidos, lípidos o proteínas) tiene un valor calórico diferente y más o menos uniforme en cada grupo. Para facilitar los cálculos del valor energético de los alimentos se toman unos valores estándar para cada grupo: un gramo de glúcidos o de proteínas libera al quemarse unas cuatro calorías, mientras que un gramo de grasa produce nueve. De ahí que los alimentos ricos en grasa tengan un contenido energético mucho mayor que los formados por glúcidos o proteínas. De hecho, toda la energía que acumulamos en el organismo como reserva a largo plazo se almacena en forma de grasas.

Recordemos que no todos los alimentos que ingerimos se queman para producir energía, sino que una parte de ellos se usan para reconstruir las estructuras del organismo o facilitar las reacciones químicas necesarias para el mantenimiento de la vida. Las vitaminas y los minerales, así como los oligoelementos, el agua y la fibra se considera que no aportan calorías.

3. Necesidades energéticas del ser humano:

En este punto hay que distinguir claramente dos aspectos: las llamadas "necesidades energéticas basales" que incluyen la energía necesaria para mantener las funciones vitales del organismo, pues aun en el individuo que está durmiendo se mantienen una serie de actividades que requieren energía (corazón, circulación sanguínea, respiración, digestión, etc.). A estas necesidades basales hay que añadir las necesarias según el tipo de actividad física realizada y que son, fundamentalmente, las que marcan las principales diferencias entre individuos: un leñador necesita ingerir mayor cantidad de energía que una persona que tenga un trabajo sedentario.

Como ya se ha explicado, la energía es suministrada al organismo por los alimentos que se ingieren, y se obtiene de la oxidación de los hidratos de carbono, grasas y proteínas, denominándose valor energético o calórico de un alimento a la cantidad de energía que se origina cuando es totalmente oxidado o metabolizado. El valor energético de un alimento se expresa normalmente en kilocalorías (Kcal.). Aunque "kilocalorías" y "calorías" no son unidades iguales (1 kcal. = 1.000 cal.), en el campo de la nutrición, con frecuencia se utilizan como sinónimos, aunque siempre teniendo en cuenta que, si no se expresa lo contrario, al hablar de calorías nos estamos refiriendo a kilocalorías. Por otro lado, en la actualidad, existe una creciente tendencia a utilizar la unidad kilojulio en lugar de la kilocaloría, con la siguiente equivalencia: 1 kcal. = 4,18 kJ.

En términos de kilocalorías, la oxidación de los alimentos en el organismo, tiene como valor medio el siguiente rendimiento:

1 gr. de grasa 9 Kcal

1 gr. de proteína 4 Kcal

1 gr. de hidratos de carbono 3,75 Kcal

Las necesidades de energía de cualquier ser vivo se calcula como la suma de varios componentes. A la energía requerida por el organismo en reposo absoluto y a temperatura constante se le llama Tasa de Metabolismo Basal (TMB), que es la mínima energía que necesitamos para mantenernos vivos. Normalmente se consume la mayor parte de las calorías de los alimentos que ingerimos. Se calcula que la tasa de metabolismo basal para un hombre tipo se sitúa en torno a los 100 W, que equivale al consumo de unos 21 gr. de glúcidos (o 9,5 gr. de grasas) cada hora.

La tasa metabólica depende de factores como el peso corporal, la relación entre masa de tejido magro y graso, la superficie externa del cuerpo, el tipo de piel o incluso el aclimatamiento a una determinada temperatura externa. Los niños tienen tasas metabólicas muy altas (mayor relación entre superficie y masa corporal), mientras que los ancianos la tienen más reducida. También es algo más baja en las mujeres que en los hombres (mayor cantidad de grasa en la piel). Por otro lado, si nos sometemos a una dieta pobre en calorías o a un ayuno prolongado, el organismo hace descender notablemente la energía consumida en reposo para hacer durar más tiempo las reservas energéticas disponibles, pero si estamos sometidos a estrés, la actividad hormonal hace que el metabolismo basal aumente.

Si en vez de estar en reposo absoluto desarrollamos alguna actividad física, nuestras necesidades energéticas aumentan. A este factor se le denomina "energía consumida por el trabajo físico", y en situaciones extremas puede alcanzar picos de hasta cincuenta veces la consumida en reposo.

4. Ingesta de calorías recomendadas en base a las medianas de alturas y pesos:

Tabla 1. Ingesta de calorías recomendadas.
Aportes Dietéticos Recomendados
CategoríaEdad (años) o condiciónPeso
(kg)
Altura
(cm)
T.M.B.a
(kcal/día)
Ración media de kcal.b
Múltiplo-TMBPor kgPor díac
Lactantes0,0 - 0,5660320---108650
0,5 - 1,0971500---98850
Niños1 - 31390740---1021300
4 - 620112950---901800
7 - 10281321130---702000
Hombres11 - 144515714401,70552500
15 - 186617617601,67453000
19 - 247217717801,67402900
25 - 507917618001,60372900
51 +7717315301,50302300
Mujeres11 - 144615713101,67472200
15 - 185516313701,60402200
19 - 245816413501,60382200
25 - 506316313801,55362200
51 +6516012801,50301900
Embarazo1er trimestre+ 0
2o trimestre+ 300
3er trimestre+ 300
Lactantes1er semestre+ 500
2o semestre+ 500

a T.M.B. = Tasa de Metabolismo Basal. Cálculo basado en ecuaciones de la FAO y después redondeados.
b El el intervalo de actividad ligera a moderada, el coeficiente de variación es de 20%.
c Las cifras están redondeadas.

Las raciones, expresadas como ingestas diarias a lo largo del tiempo, están destinadas a cubrir las variaciones individuales entre la mayoría de las personas normales, que viven en Estados Unidos en condiciones de estrés ambiental habitual. Estos son igualmente validos para personas de otros países. Las dietas han de basarse en diversos alimentos variados, con el fin de proporcionar todos los nutrientes necesarios para cubrir los requerimientos humanos (ver la página de la dieta equilibrada.

Los pesos y alturas de los adultos de referencia, son medianas reales para la población de Estados Unidos con la edad indicada, según lo comunicado pos la NHANES II. Las medianas de los pesos y las alturas para los sujetos menores de 19 años de edad se tomaron de Hamils y Cols (1979). El uso de estas cifras no implica que las relaciones entre altura y peso sean ideales.

5. Digestión de los alimentos y absorción de nutrientes:

Un alimento es realmente incorporado al organismo después de ser digerido, es decir, degradado física y químicamente para que sus componentes puedan ser absorbidos, es decir, puedan atravesar la pared del aparato digestivo y pasar a la sangre (o a la linfa).

Antes de que todos estos componentes puedan ser utilizados o metabolizados, los alimentos deben sufrir en el cuerpo diversos cambios físicos y químicos que reciben el nombre de digestión y que los hacen "absorbibles", aunque no siempre es necesario que se produzca algún cambio para que el componente se absorba. Por ejemplo, el agua, los minerales y ciertos hidratos de carbono se absorben sin modificación previa. En otros casos, el proceso culinario ya inicia cambios químicos en el alimento antes de entrar en el cuerpo: el cocinado ablanda las fibras de carne y la celulosa de los alimentos de origen vegetal y gelatiniza el almidón. Sin embargo, el verdadero proceso de la digestión no comienza hasta que el alimento está en el aparato digestivo. En el proceso de digestión también intervienen las glándulas salivares, el hígado y el páncreas y está regulado por mecanismos nerviosos y hormonales.

La digestión consiste en dos procesos, uno mecánico y otro químico. La parte mecánica de la digestión incluye la masticación, deglución, la peristalsis y la defecación o eliminación de los alimentos. En la boca se produce la mezcla y humectación del alimento con la saliva, mientras éste es triturado mecánicamente por masticación, facilitando la deglución. La saliva contiene ptialina, una enzima que hidroliza una pequeña parte del almidón a maltosa. De la boca, el alimento pasa rápidamente al esófago y al estómago, donde se mezcla con los jugos gástricos constituidos por pepsina (una enzima que comienza la digestión de la proteínas), ácido clorhídrico y el factor intrínseco, necesario para que la vitamina B12 se absorba posteriormente. El tiempo de permanencia del quimo (mezcla semilíquida del alimento) (2-4 horas) depende de múltiples factores, como por ejemplo, el tipo de alimento. Aquellos ricos en grasas permanecen más tiempo y los que tienen grandes cantidades de hidratos de carbono pasan rápidamente.

En el intestino delgado tiene lugar la mayor parte de los procesos de digestión y absorción. El alimento se mezcla con la bilis, el jugo pancreático y los jugos intestinales. Durante la fase química de la digestión diferentes enzimas rompen las moléculas complejas en unidades más sencillas que ya pueden ser absorbidas y utilizadas. Algunas de las enzimas más importantes son la lipasa (que rompe las grasas en ácidos grasos), la amilasa (que hidroliza el almidón) y las proteasas (tripsina y quimotripsina, que convierten las proteínas en aminoácidos).

En el intestino grueso, las sustancias que no han sido digeridas pueden ser fermentadas por las bacterias presentes en él, dando lugar a la producción de gases. Igualmente pueden sintetizar vitaminas del grupo B y vitamina K, aportando cantidades adicionales de estas vitaminas que serán absorbidas.

El proceso de absorción de nutrientes se produce principalmente y con una extraordinaria eficacia a través de las paredes del intestino delgado, donde se absorbe la mayor parte del agua, alcohol, azúcares, minerales y vitaminas hidrosolubles así como los productos de digestión de proteínas, grasas e hidratos de carbono. Las vitaminas liposolubles se absorben junto con los ácidos grasos.

La absorción puede disminuir notablemente si se ingieren sustancias que aceleran la velocidad de tránsito intestinal, como la fibra dietética ingerida en grandes cantidades y los laxantes. Igualmente, la fibra y el ácido fítico pueden reducir la absorción de algunos minerales, como el hierro o el zinc, por ejemplo. En la enfermedad celíaca (o intolerancia al gluten), la destrucción de las vellosidades intestinales puede reducir significativamente la superficie de absorción.

En el intestino grueso, donde se reabsorbe una importante cantidad de agua del residuo que llega del intestino delgado, se almacenan las heces hasta ser excretadas por el ano. Las heces, además de los componentes no digeridos de los alimentos, contienen gran cantidad de restos celulares, consecuencia de la continua regeneración de la pared celular.

Una vez absorbidos los nutrientes son transportados por la sangre hasta las células en las que van a ser utilizados.

Los ácidos grasos que pasan a la pared intestinal son transformados inmediatamente en triglicéridos que serán transportados hasta la sangre por la linfa. La grasa puede ser transformada posteriormente en el hígado y finalmente se deposita en el tejido adiposo, una importante reserva de grasa y de energía.

Los hidratos de carbono en forma de monosacáridos pasan a la sangre y posteriormente al hígado desde donde pueden ser transportados como glucosa a todas las células del organismo para ser metabolizada y producir energía. La insulina es necesaria para la incorporación de la glucosa a las células. Los monosacáridos también pueden ser transformados en glucógeno, una fuente de energía fácilmente utilizable que se almacena en el hígado y en los músculos esqueléticos.

Los aminoácidos de las proteínas pasan igualmente a la sangre y de ésta al hígado. Posteriormente pueden pasar a la circulación general para formar parte del pool de aminoácidos, una importante reverva que será utilizado para la síntesis de proteínas estructurales y enzimas. Los aminoácidos en exceso también pueden ser oxidados para producir energía.

7. Bibliografía:

  • "La dieta perfecta. Guía para conseguir una alimentación a tu medida"; Dr J. L. Cidón Madrigal; edit. Grupo Correo; colección "biblioteca de la salud"; 1996.
  • "Guía de alimentación para el deportista"; Alberto Muñoz Soler y Fco. J. López Meseguer; Edit. Tutor; colección "En forma"; Madrid, 2001.
  • "Enciclopedia familiar Everest de la salud"; varios autores; Edit. Everest, León (España) 2000.
  • "Invitación a la biología"; Helena Curtis, N Sue Barnes; Edit. Panamericana; Madrid, 1994.
  • "Enciclopedia del cuerpo humano"; varios autores; Edit. Espasa Calpe; España 2003.
  • "Fisiología del ejercicio": J. López Chicharro, A. Fernández Vaquero; Edit. Panamericana; Madrid 2001.
  • "Alimentación y nutrición, manual teórico-práctico"; C. Vázquez, A. I. De Cos, C. López-Nomdedeu; Edit. Diaz De Santos; Madrid, 1988